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Abstract

A distributed dislocation method has been developed to quantify the elastic fields of
inclusion eigenstrain problems in 2D and 3D (Lerma et al. 2003). The inclusions can be of
any shape or size and the eigenstrains can be arbitrarily assigned, i.e. constant or non-
constant within the inclusion. The method works well for material or field points inside or
outside the inclusion domain, and is straightforward to apply. The method is based on
discretizing the inclusion-matrix interface into a mesh of small regions of misfit represented
in the method by dislocation loops with appropriately assigned Burgers vectors. The method
works well for relatively far points from the inclusion although it also works for relatively
close points at the expense of increasing the mesh density, i.e. the computational time
involved. It was shown that, with increasing mesh density, the method converges onto known
analytical solutions for some specialized geometry and misfits. Recently, we have developed
a new distributed-dislocation method for modeling eigenstrain problems such as gamma
prime inclusions/particles in nickel-base superalloys. Here the dislocation loops representing
the misfit are distributed throughout the volume of the inclusion with the dislocation lines
themselves lying on the inclusion-matrix interface.

In addition we have performed 3D Dislocation Dynamics (DD) simulations to capture
the strengthening effect of dilute misfit particle concentrations (Khraishi et al. 2003, 2004).
The simulations were concerned with metal-matrix composites (MMCs) and focused on the
strengthening effect associated with eigenstrain fields and not image stresses. These initial
simulation results indicated a strengthening effect of one to three times higher than measured
experimentally. This was done taking into account the effect of parameters such as particle
radius, relative initial particle-dislocation source configuration, and number of particles. The
simulations suggested that particle volume fraction is a strong indicator of the strengthening
effect of particles in MMCs.

In addition, simulations of the strengthening effect of low-angle grain boundaries
were also performed and shed some light on interesting observations (Khraishi et al. 2003).
Also, a study of a Bauschinger-like effect during cyclic loading was performed using 3D DD
(Leger et al. 2004). Results indicated that, in some material systems, this effect could be
explained by dislocation-particle interactions. Lastly, our 3D code has been now enhanced to
handle in a rigorous way a larger variety of boundary conditions imposed on the simulation
box's external surfaces. In particular, the emulation of free surface effects on the overall
plasticity of these small simulation volumes can now be captured (Yan et al. 2003, 2004).



Research Objective

The objective of this research effort is to develop fundamental understandings of
some of the strengthening mechanisms that exist in crystalline metallic materials. This is
accomplished via rigorous theoretical and numerical treatments, and comparisons with
experiments where applicable. One aspect of this broader goal is to focus on misfit particles
in a crystalline matrix and examine how their presence affects dislocation motion (i.e.
plasticity-inducing elements in the metal). This is achieved by developing a generalized
methodology in 2D and 3D to quantify misfit particles' stress and displacement fields. Such a
generalization necessitates specific numerical schemes. Another objective is to utilize these
misfit particle fields in a 3D Dislocation Dynamics (DD) framework and capture the
micromechanics of dislocation-particle interaction. From the small-scale mechanics, DD also
naturally allows for projection of results to a larger mesoscopic scale. The simulations in the
second objective are sought for both monotonic and cyclic loading. A last objective is to use
DD to investigate the strengthening effect offered by grain boundaries and the effect of free
surfaces on the strength of the material.

A Distributed-Dislocation Method for 2D Eigenstrain Problems

For inclusion problems Eshelby (1957) amongst others, introduced the eigenstrain
method to quantify the elastic fields of these inclusions inside the inclusion and outside in the
matrix. Such a method allows the derivation of analytical solutions of these problems (Mura
1982). Such solutions, however, are typically found for specialized inclusion geometry and
simple eigenstrain expression (mostly for constant eigenstrain). This is so since finding
analytical solutions for any arbitrary problem is almost impossible due to the complicated
integration steps involved in this method. Moreover, the analytical method differentiates
between the inclusion domain and the matrix domain in the solution procedure, with the
elastic fields in the inclusion domain typically much easier to find.

Here, we have developed a numerical method to find the elastic fields of these
inclusions for arbitrary situations. The method is based on two ideas: (1) An eigenstrain can
be considered as a misfit between the inclusion and the matrix. (2) Any small misfit region
can be modeled as a dislocation loop with appropriately assigned Burgers vector. The
simplest eigenstrain problem is that of an elastic, infinitely long cylindrical bar inserted or
fitted into a slightly smaller cylindrical hole in an infinite elastic medium. Here, the misfit
region between the two is simply a cylindrical shell. To solve this problem, based on the
above two ideas, the shell or misfit region is meshed such that each element represents a
dislocation loop with some appropriately assigned Burgers vector. Figure 1 shows one of the
meshes used for the case of an elliptical particle or inclusion. Figure 2 shows some plots of
a,,, along the x-axis inside the particle. The solid line is the analytical solution (Mura 1982).
As seen in the figure, the plots from the numerical solution introduced above converged onto
the analytical one as the number of mesh elements, or dislocation loops, increased. It is to be
noted here that other geometry and eigenstrains have been investigated and the method
worked for all of them.



A Distributed-Dislocation Method for 3D Eigenstrain Problems

One can easily extend the above method for 2D misfit particle problems to treat 3D
problems. The simplest case to consider here is that of a spherical particle fitted into a
smaller spherical cavity. The ensuring elastic fields for the case of constant normal
eigenstrains inside the particle have been given analytically by Teodosiu (1982). For the case
of shear eigenstrain, the solution is given in Mura (1982). This latter solution is compared
against our numerical solution in Figure 3. As seen again here, the numerical solution
converges onto the analytical one for larger mesh densities. Here again different eigenstrains
have been tried and the numerical method worked for all of them.
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Figure 1: The mesh used in discretizing Figure 2: Normalized a,, stress inside the
the misfit region around an elliptical elliptical particle along the x-axis for
inclusion. increasing number of loops. This is for the
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Figure 3: A plot of o-•/G along the x-axis inside a Figure 4: 3D triangular
particle of 100 units in radius. The different dash surface mesh of a spherical
sizes correspond to different mesh densities (larger particle.
dashes are for denser meshes.



Dislocation Dynamics (DD) Simulations of Particle Strengthening in MMCs

In this part of our research, we have investigated the strengthening effect of particles
embedded in a metal-matrix, i.e. metal-matrix composites or MMCs. In particular, we have
focused our investigation on dilute particle concentrations. In such systems, the likelihood of
a dislocation-particle head-on collision is minute and therefore most strengthening in the
composite would come from the eigenstrain field associated with the embedded particles (i.e.
thermally-induced stresses).
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Figure 5: A snapshot of the simulations Figure 6: Simulated stress (cz) versus
illustrating dislocation storage, in the shear strain (ryz) for different number of
form of glide dislocation pile-ups, in particles. This plot shows the effect of
the dislocation source's glide plane particle number, or volume fraction, on
above four particles, the flow stress value.

Here the matrix used in the simulations was aluminum and the particles were made of
SiC. As the dislocations hovered over the particles, as in Figure 5, they were captured in the
strain field of these particles in the form of pile-ups of glide dislocation loops. These pile-ups
provided for an increase in the flow stress of the material as can be seen in Figure 6. The
results indicated that particle volume fraction is a major parameter for measuring the
expected strengthening due to particles in these composites.



A Distributed-Dislocation Method for 3D Eigenstrain Problems

For inclusion problems where a volume misfit is present (for example gamma prime
particles in nickel-base superalloys), there are inherently three linear misfit directions that are
perpendicular to one another. More generically these misfit problems are termed eigenstrain
problems. Currently no analytical methods are capable of calculating the elastic fields, i.e.
displacement, strain and stress, of these particles/inclusions especially if the particle shape is
not a simple shape such as a sphere or a cube. For example, real gamma prime particles are
of cuboidal, spheroidal or lamellar shapes. To handle all such different and general shapes
numerical models are needed.

From dislocation theory each closed dislocation loop represents a planar misfit. If one
distributes such planar misfits or dislocation loops along an axis in space one can then
reproduce a volume misfit along that direction, i.e. an eigenstrain along that direction in
space. The easiest dislocation loops to think about or imagine are prismatic dislocation loops
where the Burgers vector or misfit is perpendicular to the loop habit plane. Distributing such
loops along the x-axis would produce a normal c*x eigenstrain. This is shown schematically
in Figure 7a. Note that the dislocation lines of these loops define the boundary of the particle,
or the particle-matrix interface. One can also distribute loops along the y-axis, as in Figure
7b, to produce a normal E* eigenstrain. Finally, one can distribute loops in all three
orthogonal directions, Figure 7c, to produce normal e*x, E* and E* eigenstrains
simultaneously. In this method, the misfit in one direction is equal to the sum of the Burgers
vectors along this direction. Also, the more loops distributed along a certain length or
dimension L, for example along a cubic particle side, the smaller their Burgers vectors are
going to be and the more convergent the numerical solution is toward the actual solution, i.e.
the more the numerical problem will mimic the real situation in a material.
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Figure 7 (a, b, c). A cubical precipitate with a distribution of rectangular dislocation loops
(four each) along (a) x-axis and (b) y-axis, representing the misfit (normal eigenstrain) along
these axes respectively, (c) A mesh of loops is generated along all three axes.



One of the main advantages of this distributed-dislocation method is that it can easily handle
particles with difficult shapes. For example some real gamma prima particles are not exact
cubes but rather cuboidal in shape where there have truncated comers similar to Figure 8.
Loops can be distributed in this volume in all three perpendicular directions to produce a
dilatation. Moreover, the method easily allows for a non-uniform distribution of eigenstrains
by simply distributing the loops in a non-uniform fashion along any direction. This feature is
valuable when considering the anisotropy of dilatation. Finally, although not shown here, the
method is equally applicable to shear eigenstrains. Figure 9 shows a typical stress result for a
perfect cubical particle calculated from its center out, along the y-axis in this case. The y-axis
here happens to intersect the center of one of the cube faces at a distance of 5000 units.
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Figure 8. A cuboidal precipitate (20x20x20 loop mesh) with uniform chamfer at the comers.
The chamfer cut length is uniform and is 25% of the total face-to-face distance (i.e. edge
length of an enclosing cube). These cuboidal shapes are emulated at the comers using
octagonal loops. Square loops are used in between comers as in the case of perfect cube.
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Modeling Free Surface Effects in 3-D DD

The objective of this part of the research is to try and quantify the effect of free
surfaces on the plasticity, e.g. flow stress, of a material within the context of 3-D DD. The
DD computational cell is typically cubic or parallelepiped in shape. The surfaces of such
shape are typically free surfaces. The fundamental stress solution used for dislocations in the
cell is based on an infinite medium. This solution creates unphysical tractions on the free
surfaces. We developed a method by which we enforce a physical zero traction condition on
select or collocation points on the surface. Such points are shown in Figure 10 as the centers
of square or rectangles on a surface S. A dislocation segment like A1B1 would produce
unphysical tractions at these points. If one assumes that each rectangle or square is a stress-
producing dislocation loop then our goal is to find the Burgers vector of these mathematical
loops such that zero traction is enforced at the collocation points. The more collocation
points the better (see Figure 11). Such a stated requirement translates into a system of linear
algebraic equations that is to be solved for the unknown Burgers vector components. Once
the Burgers vectors of the loops are determined then the "image stresses" or free surface
effect is simply that produced by the surface loops onto the dislocation segment A1BI (Yan et
al. 2003, 2004). As part of the method, the stress field of a dislocation loop, as shown in the
inset of Figure 10, had to be developed. Treating all surfaces of a computational cell with this
method in the DD code, the stress-strain diagrams of a material subject to a constant strain
rate is shown in Figure 11. The figure shows an effect on the flow stress of about 15% for the
particular choice of parameters or problem considered. Other situations might produce a
smaller or larger effect.
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Figure 10. Segment AlBI beneath a fee surface. Also, a mesh of rectangular elements,
representing generally-prismatic dislocation loops, covering area S upon which stress traction
annulment is sought. The inset shows one of these loops. The elements' centers are

collocation points for the problem at hand. Loop i is centered at (xo,, yO') with z, = 0 in

this case.
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Figure 11. Stress-strain diagrams from DD simulations for one operational Frank-Read
source in a cubic cell that is 10,000b in side length. The source is close to the cell's center
away from its surfaces. The line with a square symbol corresponds to no treatment of the
traction-free boundary condition, and the other lines correspond to an external surface mesh
density of lOx 10 loops, 16x 16 loops, and 20x20 loops.

Dislocation Dynamics (DD) Simulations of Cyclic Loading

The same methodology for studying the dislocation-particle interaction, described
above, was used to simulate the uniaxial cyclic loading. The attention is to investigate the
Bauschinger-like effect, or "strength differential," in metals containing inclusion particles,
although the slip plane considered in this study does not intersect the spherical particle in the
model. The physical rationale is that the elastic interaction considered here actually occurs
much more frequently in materials with dilute particle concentrations than the commonly
conceived Orowan looping events. This is because a given dislocation segment is expected
to traverse the metal matrix for a relatively long distance before, if ever, approaching a
particle head-on.

Figure 12(a) shows the simulated overall uniaxial stress-strain response of the crystal
with no embedded particle. The simulation features a forward tensile loading to an applied
strain of 0.0025, followed by a reversed loading back to zero strain. It is clear that this
reference case shows no strength differential. Figure 12(b) shows the simulated stress-strain
response of the crystal containing a spherical particle of radius 2,000 b (b is the magnitude of
a Burgers vector). The closest distance between the slip plane and the edge of the particle is
887 b. The existence of the elastic misfit field causes a strong strength differential: the
magnitude of tensile flow stress is significantly greater than that of the compression. The
reasons behind this Bauschinger-like effect can be seen by examining the evolution of
dislocation configurations obtained from the present DD simulations. Examples are shown
in Figures 13 and 14, which demonstrate the dislocation sub-structure in the models without
and with, respectively, a misfit particle. The "back stress" concept can be employed to
analyze the simulation result. The effects of particle size and applied strain rate on the
overall cyclic material behavior are also studied (Leger et al. 2004).
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Figure I(a) of the crystal with no Figure 1(b) of the crystal with an
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Simulations of Dislocation-Grain Boundary Interaction

We have performed some preliminary simulations of the interaction between gliding
dislocations and tilt walls or low-angle grain boundaries in an aluminum matrix. Several
interesting results came out of this work. Figure 15 shows the parameters of pertinence to the



simulations, i.e. the problem set-up which is a dislocation source between two walls of the
same tilt angle.

Low-angle (tilt) O=tilt angle=b/D
Grain Boundaries

• app

Figure 15. A schematic of two low-angle grain boundaries or tilt walls separated by a
distance W. The walls have the same Burgers vector b as dislocation source A which is
pinned at both ends. Dislocation A is free to glide under applied stress 'app and the stress field
of the walls. The walls have the same sign.

The impediment to dislocation motion offered by the tilt walls manifests itself in a
higher flow stress value on a stress-strain curve. Fixing the wall spacing, height and length,
the number of dislocations within a wall (or equivalently the spacing of wall dislocations or
tilt angle) can be varied to study their effect on the flow stress. Figure 16 shows the results of
such a study. In this figure, it is clearly observed that as the number of wall dislocations N
increased the flow stress value for the material increased. If one uses this figure to plot flow
stress versus the tilt angle, one obtains the curve in Figure 17 where a zero tilt angle
corresponds to the case of no walls present (i.e. an infinite spacing between the wall
dislocations). The curve shows a non-linear dependence of flow stress on the tilt angle. It is
important here to note that this hardening effect in the material is not a Hall-Petch effect. In
other words, we are not measuring here the dependence of the flow stress on the cell size, i.e.
the wall spacing. Instead, flow stress is demonstrated to be a function of the tilt angle,
something that has not been focused on in previous studies.



Flow Stress versus Dislocation Wall Angle
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Figure 16. The effect of the number of dislocations within a wall of fixed H (or equivalently
the spacing of wall dislocations or tilt angle) on the flow stress of the material.
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Figure 17. The flow stress versus the dislocation tilt wall angle (based on Figure 5).
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